MAU34101 Galois theory

4 - Solvability by radicals

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2021–2022 Version: December 3, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Solvable groups

Commutators and the derived subgroup

Let G be a group with identity 1_G , and let $x, y \in G$.

Definition (Commutator)

The commutator of x and y is
$$[x, y] = xyx^{-1}y^{-1}$$
.

Observe that $[x, y] = (xy)(yx)^{-1}$, so x and y commute iff. $[x, y] = 1_G$, whence the name.

Definition (Derived subgroup)

The derived subgroup D(G) of G is the subgroup spanned by the commutators.

We have $z[x, y]z^{-1} = [zxz^{-1}, zyz^{-1}]$ for all $x, y, z \in G$, so D(G) is actually <u>normal</u> in G.

Also note that $D(G) = \{1_G\}$ iff. G is Abelian.

Commutators and the derived subgroup

Definition (Abelianisation)

The Abelianised of G is $G^{ab} = G/D(G)$.

 G^{ab} is Abelian by construction. In fact, for all $N \triangleleft G$, the quotient G/N is Abelian iff. N contains D(G), and in this case G/N is a quotient of G^{ab} .

Example

Let $n \in \mathbb{N}$, and let $G = S_n$.

Since the sign ε is a morphism and since $\{\pm 1\}$ is Abelian, we always have $\varepsilon([x, y]) = [\varepsilon(x), \varepsilon(y)] = +1$, so $D(S_n) \leq A_n$.

One proves that in fact, $D(S_n) = A_n$. Therefore $S_n^{ab} \stackrel{\varepsilon}{\simeq} \{\pm 1\}$ for $n \ge 2$.

Normal series

Let still G be a group.

Definition (Normal series)

A normal series of length $r \in \mathbb{N}$ for G is a chain

$$\{1_G\}=H_0\triangleleft H_1\triangleleft\cdots\triangleleft H_r=G.$$

The quotients H_{j+1}/H_j are called the factors of the series.

Example

For $G = S_3$, we have the series $\{Id\} \triangleleft A_3 \triangleleft S_3$, with factors $A_3 \simeq \mathbb{Z}/3\mathbb{Z}$ and $S_3/A_3 \simeq \mathbb{Z}/2\mathbb{Z}$.

For $G = S_4$, we have the series $\{ Id \} \triangleleft V_4 \triangleleft A_4 \triangleleft S_4$, with factors $V_4 \simeq (\mathbb{Z}/2\mathbb{Z})^2$, $A_4/V_4 \simeq \mathbb{Z}/3\mathbb{Z}$, and $S_4/A_4 \simeq \mathbb{Z}/2\mathbb{Z}$.

Observe that in both cases, G is **NOT** simply the product of the factors.

Define inductively $D^{0}(G) = G$, $D^{1}(G) = D(G)$, $D^{2}(G) = D(D(G))$, ..., $D^{n+1}(G) = D(D^{n}(G))$,

Suppose that there exists $s \in \mathbb{N}$ such that $D^{s}(G) = \{1_{G}\}$. Then we get the normal series

$$\{1_G\} = D^s(G) \triangleleft D^{s-1}(G) \triangleleft \cdots \triangleleft D^1(G) \triangleleft D^0(G) = G$$

which is called the derived series of G.

Its factors are <u>Abelian</u>, since $D^n(G)/D^{n+1}(\overline{G}) = D^n(G)/D(D^n(G)) = (D^n(G))^{ab}$.

Theorem (Characterisations of solvability)

Let G be a finite group. TFAE:

- There exists a normal series for G with Abelian factors,
- There exists a normal series for G with cyclic factors,
- There exists $s \in \mathbb{N}$ such that $D^{s}(G) = \{1_{G}\}$.

See notes for the proof.

Definition

A finite group satisfying the above conditions is called solvable.

Solvable groups: examples and counter-examples

Example

If G is Abelian, then G is solvable (take s = 1).

Example

We have written series which prove that S_3 and S_4 are solvable.

Counter-example

However, for $n \ge 5$, we have that $D(S_n) = A_n$; but then $D(A_n) \triangleleft A_n$ is nontrivial since A_n is not Abelian $\rightarrow D(A_n) = A_n$ as A_n is simple.

Therefore the derived series for S_n gets stuck on A_n , so S_n (nor A_n) is not solvable.

Preservation of solvability

Theorem

Let G be a solvable group.

- Any subgroup of G is also solvable.
- The image of G by any morphism is also solvable.
- Any quotient of G is also solvable.

Proof.

Let $H \leq G$ be a subgroup. One checks inductively that $D^n(H) \leq D^n(G)$ for all $n \in \mathbb{N}$, so H is solvable.

Let $f : G \longrightarrow \Gamma$ be a group morphism. One checks inductively that $D^n(f(G)) = f(D^n(G))$ for all $n \in \mathbb{N}$, so f(G) is also solvable.

In particular, any quotient of G is solvable.

Solvable polynomials

Definition (Elementary radical)

A field extension L/K is elementary radical if there exists $\alpha \in L$ such that $L = K(\alpha)$ and $\alpha^n \in K$ for some $n \in \mathbb{N}$.

The idea is that $L = K(\sqrt[n]{a})$ for some $a = \alpha^n \in K$. However, this radical notation is subtly wrong, because *n*-th roots are multi-valued in general. This is the reason why the definition is stated without radicals.

Definition (Radical)

A field extension L/K is <u>radical</u> if there exists a finite tower of intermediate fields

$$K = E_0 \subseteq E_1 \cdots \subseteq E_r = L$$

with E_{j+1}/E_j elementary radical for all j.

Example

$$\mathbb{Q}(\sqrt[23]{\sqrt[7]{12}}-9,\sqrt{5})$$
 is a radical extension of \mathbb{Q} , because

$$\underbrace{\mathbb{Q}}_{\ni 12} \subseteq \underbrace{\mathbb{Q}(\sqrt[7]{12})}_{\ni \sqrt[7]{12}-9} \subseteq \underbrace{\mathbb{Q}(\sqrt[23]{\sqrt[7]{12}-9})}_{\ni 5} \subseteq \mathbb{Q}(\sqrt[23]{\sqrt[7]{12}-9},\sqrt{5}).$$

Definition (Solvability by radicals)

Let K be a field, and $F(x) \in K[x]$. We say that F is solvable by radicals over K if there exists a radical extension of K in which F has all its roots.

In other words, this means that the roots of F are expressible from K by nested *n*-th roots and the four field operations.

Galois's theorem

Theorem (Galois)

Let K be a field of characteristic 0, and let $F(x) \in K[x]$ be separable. Then F is solvable by radicals over $K \iff Gal_{K}(F)$ is a solvable group.

See notes for the proof. The idea is that a chain of elementary radical extensions Galois-corresponds to a normal series with cyclic factors for $Gal_{\kappa}(F)$, and vice-versa.

Remark

The only reason why assume F separable is so that $\operatorname{Gal}_{K}(F)$ makes sense. But in characteristic zero, all fields are perfect, so nonseparable polynomials have repeated factors; by removing these multiplicities, we get another polynomial which is separable and has the same roots as F.

Counter-example

Let
$$F(x) = x^5 - x - 1 \in \mathbb{Q}[x]$$
.

We have seen that F is separable and has $\operatorname{Gal}_{\mathbb{Q}}(F) = S_5$ which is not solvable. Therefore F is not solvable by radicals over \mathbb{Q} .

This means that although F has roots (in \mathbb{C}), these roots do not look like $\sqrt[23]{\sqrt[7]{12}-9} + \sqrt{5}$.

This implies that there cannot exist general formulas to solve by radicals polynomial equations of degree ≥ 5 (consider $F(x)(x-1)(x-2)\cdots$).

... but this is only for the generic case.

Example

Let $n \in \mathbb{N}$ be large.

Then the cyclotomic polynomial $\Phi_n(x) \in \mathbb{Q}[x]$ has degree $\phi(n) \ge 5$ and is irreducible;

and yet its Galois group over $\mathbb Q$ is $(\mathbb Z/n\mathbb Z)^\times$ which is Abelian and therefore solvable,

so $\Phi_n(x)$ is solvable by radicals over \mathbb{Q} .

Indeed, its roots are of the form $\sqrt[n]{1}$.

Note that this direction of the proof of Galois's theorem is actually constructive, and leads to non-trivial and more satisfying expressions of the roots of $\Phi_n(x)$ by radicals; see the notes for an example.